
441 

Radiative transfer effects in natural convection 
above fires 
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Harvard University, Cambridge, Massachusetts 
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This paper describes the results of examining the influence of radiative heat 
transfer on turbulent natural convection above fires in an atmosphere of constant 
potential temperature, under both the ‘opaque ’ and ‘transparent ’ approxima- 
tions. It turns out that on the basis of the over-all approximations introduced 
in this investigation, the former case reduces to that of no radiative transfer. 
For the latter case, the initial fire size, the energy release rate (initial tem- 
perature difference) and the absorption coefficient have been regarded as in- 
dependent parameters. The solution curves presented cover a range over which 
these parameters are expected to vary in practice. 

1. Introduction 
For an exact theoretical investigation of the role played by the radiative mode 

of heat transfer in the dynamics of a rising column of hot gases above a fire, one 
has to solve the three conservation equations of fluid mechanics coupled with the 
integro-differential equation of radiative transfer. The formulation of the first 
part of the problem, namely the fundamental equations, will dependupon whether 
one is dealing with a laminar or a turbulent flow. Experiments on the burning of 
dishes of liquid fuel have shown that the flow field is turbulent at  a height 
greater than about one or two times the diameter of the dish. Owing to this, 
as well as to the fact that the radiation effect will be significant only in larger 
fires which are turbulent right from the start, it seems more realistic to confine 
the present discussion of radiation effects to turbulent fields of flow. Having set 
up the system of equations for such a flow, before any further progress can be 
made one needs to know the composition of the plume at  any height and the 
absorption coefficient of each component at the temperature and pressure 
prevailing at  that level. The former property can be obtained by solving the 
problem of mixing of the products of combustion with the constituents of the 
atmosphere outside, and one could perhaps do this for the turbulent case, at  
least to the same order of accuracy as one determines the other variables in the 
problem. As regards the latter property, from a theoretical stand-point one must 
know the spectral distribution, line shape, etc., for each component of the plume. 
This knowledge does not seem to exist for the products of combustion that may 
be formed above fires at the temperatures prevailing there. 

One can, however, make measurements on emissivities from which the 
absorption coefficient E* can be calculated. These have been made by Hottel & 

t Now at the Defence Science Laboratory, Government of India, New Delhi. 
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Mangelsdorf (1935) for carbon dioxide and water vapour up to quite high tem- 
peratures. This data could be usefully employed for certain ‘clean’ fires. For 
fires which might contain other constituents, one needs additional measurements. 
It seems appropriate, from the point of view of a theoretical analysis, to work 
out the solution for an expected range of the absorption coefficient, being guided 
in this estimation by the above data as also by other data on flame emissivities. 
This paper is an account of such an attempt. No change in composition of the 
plume with height-either due to change of temperature or mixing-is taken 
into account. In  other words, it is assumed that the products of a combustion 
in the plume above a fire consist of a ‘single’ component whose radiation 
properties-emission and absorption-remain constant with height. Further, 
we make use of the asymptotic solutions of the integro-differential equation of 
radiative heat transfer for both the opaque and transparent approximations. 
Finally, we assume that the emissivity and absorptivity are the same, the outside 
atmosphere being calm, with constant potential temperature and emitting 
black-body radiation. 

2. The fundamental equations and numerical solution 
For a cylindrically-symmetric convection column, let X be the axial co-ordinate 

measured vertically upward and let r be the radial co-ordinate. The corresponding 
velocity components u, v, the density p, the pressure p ,  and all other fluid pro- 
perties, are assumed to be local mean values. Thus turbulent components are 
averaged out or included in other terms as shear stress r or heat flux q. If the 
vertical pressure distribution is given by the hydrostatic approximation, we have 

P = Po-Ym% (1) 

where p o  is the standard pressure and ym the specific weight of the fluid outside 
the plume at infinity. The equations of conservation of mass, momentum and 
energy are then 

(2) 
a a 
- (yru)  + - (yrw) = 0, ax ar 

au au r (Ym-Y)  1 a 
ru-+rv- = +--(rr ) ,  

all: ar P par 
(3) 

Here y is the specific weight of the fluid inside the plume, h its enthalpy per unit 
volume, g the gravitational acceleration, and r and q the vertical shear stress 
and radial flux, being given in turbulent flow by pu12)) and cPpu’T’, respectively, 
where u‘, w’, and T‘ are the fluctuating components of u, w, and T ,  the absolute 
temperature. H is the heating per unit volume due to radiation flux. In equation 
(4) the dissipation function and vertical heat flux have been neglected. The 
above system of equations have to be supplemented by the equation of radiative 
heat transfer (Kourganoff 1953), namely 

(5) a l p s  = E*(B - I@)},  



Radiative transfer effects in natural convection above fires 443 

where 1 is the intensity of radiation a t  a point integrated over all frequencies, 
k* the ‘grey’ absorption coefficient for the fluid, B the Planck’s function, and 
s an element of length. The heating rate H per unit volume due to radiation is 
given by the integral over all solid angles w of dI/ds, namely 

(i) Transparent approximation 

In  equation (6) the first term gives the amount of radiation emitted by an element, 
while the second term gives that absorbed by it from its surroundings, which 
include other elements in the plume as well as the boundaries. Since the mean 
free path of the radiation is (k*)-1, it  is clear that, if (k*)-l  is much greater than 
some characteristic length, say the plume width, then the element under con- 
sideration will be emitting radiation to and receiving it from the surroundings 
only. This is the so-called ‘transparent’ approximation. Inserting the value of 
Planck’s function B, and assuming that the radiation emitted by the surroundings 
is black-body radiation at  the absolute temperature T ,  and that k* is the same 
inside and outside the plume, we have 

H = - 4 ~ k * ~ ( T 4  - T$), (7) 

where v is the Stefan constant. 

(ii) Opaque approximation 
The other limiting case which suggests itself occurs when (k*)-1 is much smaller 
than some characteristic length in the problem. It is known that, for such a case, 
the radiation has diffusive properties acting like conduction with conductivity 
proportional to T3. Mathematically one could obtain this by solving equation 
( 5 )  in the usual way, expanding B as a Taylor series in the optical depth (defined 
as the integral of k* over any path) and substituting in equation (6) (see, for 
example, Chandrasekhar 1939). One retains only three terms and neglects the 
higher ones in the expansion (for they can be shown to be much smaller for this 
approximation). One obtains, corresponding to equation (7) for the other 
approximation, the equation 

After putting the two values of H given by (7) and (8) in the energy equation 
above, we proceed as in the previous work by Murgai & Emmons (1960); namely, 
we substitute potential temperature and density in the above equations, inte- 
grate them with respect to r from 0 to co, and define the mean values of velocity 
ZC, plume-width 8, and specific gravity difference -&$yo as in equations (9) 
to (12) of the previous paper mentioned above. A subscript zero now indicates 
potential temperature (To) and specific weight (yo). In  terms of these mean 
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values, our equations for an atmosphere with constant potential temperature, 
for the transparent approximation, become 

d 
-(b%) = ah%, 
dZ 

d h y 0  
- (6222) = gb2 ~, ax Yo 

K being the exponent of the adiabatic law, p o  the ratio of the pressure to some 
standard pressure, cp the specific heat at  constant pressure, 6o the initial value 
of 6, po the potential density inside the plume, pmo the potential density of the 
outside atmosphere, and I* in equation ( 1  1) the shape factor denoted by I in 
relation (12)  of Murgai & Emmons (1960).  

For the opaque case one should neglect the vertical diffusion term i32B/3Z2, 
in order to be consistent with the rest of the formulation, before substituting the 
value of H in equation (4), and then one should proceed to integrate it with respect 
to r. Thus one gets, on the right-hand side of the energy equation, the term 

For the steady-state problem of gravitational convection above fires, in an 
infinite atmosphere, the most natural boundary condition at  the edges of the 
plume seems to be To = Tmo, or (ri3TO/ar)r=m = 0. 

This leads to the result that, within the framework of these approximations 
(boundary-layer equations, infinite rkgime, etc.), the opaque case reduces to 
the case of no radiative transfer.T 

We now define the following dimensionless variables : 

ax x = -  
6 0  ' 

(Thus q5 is the dimensionless 'radiation number '.) 

case 
This leads to the final form of the conservation equations for the transparent 

( d / d x )  (b2u) = bu, (13)  

(dldx)  (b2u2) = b2h, 
(d ldx )  (b2uh) = -a"{( 1 + h8)4 - l } .  

(14) 

(15) 

t The expression given by 11 (a )  above will not be zero, for example, for the case of an 
axisymmetric fire surrounded by another ring of fire, there then being a h i t e  amount of 
radiative transfer at  the boundaries. 
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The boundary conditions are 

b = 1, h = 1, u = uo = 1 (say), for x = 0. (16) 

The case q5 = 0 also represents, in a certain sense only, the opaque case. 
Generally speaking, uo should be a parameter, but it is expected that, in a 

problem primarily meant to estimate the effects of radiation on the dynamics 
of a plume, the variation of its initial velocity will have no significant effect. 
For this reason we have worked out the numerical solutions of the above equa- 
tions with S and q5 as parameters, varying from 1 to 5 and 0 to 0.5, respectively. 

In  order to do this, we made the following substitutions: bu = v, b2u = W ,  

b2hu = f .  
The equations (13) to (15) and the boundary conditions (16) then become 

dwldx = V ,  (17) 

dvqldx = Zfw, (18) 

d f  ax - - - g $ { ( l + s p ] ,  (19) 

and v = w = f = l ,  for x=O. (20) 

Starting with x = 0, the values of v, w and f at a small Ax were found by straight- 
forward integration after giving a certain preassigned value to them in this 
interval. This was repeated for this Ax till the successive calculations converged. 
The values thus found provided a new set of starting conditions for the next 
interval. This process was carried out till f was O(O), after which the equations 
had the following closed solution, namely w - wo = vo(x - xo), vo, wo being the 
values of v and w respectively at x = xo, the value of x at which f = 0. The details 
of numerical analysis are available on request. Figures 1, 2 and 3 are for b, u 
and h for 6 = 2.0 and 4 values given on the curves. 

It will be apparent from the curves that while the system loses buoyancy in 
a very small fraction of its height of ascent it has sufficient momentum to go up. 
It is quite instructive, for the purpose of discussion, to define a 50 % height for 
buoyancy and momentum as the height during which, in the process of ascent 
of the plume, they are reduced to half of their initial value. We have determined 
these heights for L* = 0.01 cm-1 for various values of 6 and $.? These are given 
in table 1.  It is apparent that in almost all cases the 50 yo height for buoyancy is 
reached when the rising plume has hardly lost any momentum. The fire size 8,, for 
the same values of S and q5 is proportional to ( L * ) - 2 ,  and for any other value of the 
absorption coefficient, 8, and the corresponding maximum heights reached can be 
found from those given in the table by appropriate scaling. For an optically thick 
plume as distinguished from an optically thin one, one would expect on physical 
grounds that it would not lose buoyancy as soon as the latter does (because of a 
‘diffusive contact’ with the outside atmosphere), and it would therefore ‘last’ 
longer. This fact is borne out even by the above approximate solution of the 

ds t k* is defined in terms of the emmissivity 6 as Lt -, where x is the path length. 
r-+n dx 

k* calculated in this manner from Hottel’s data for carbon dioxide is 0.1 cm-’. 
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FIGURE 1. The variation of plume width b with height 5 and radiation number. Parameter 6 
is the ratio of the initial difference of temperature of the plume and the outside atmosphere 
and the temperature of the latter. 6 = 2. 
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FIGURE 2. The variation of vertical velocity u with height x and the radiation number. 
Parameter S is the ratio of the initial difference of temperature of the plume and the outside 
atmosphere and the temperature of the latter. S = 2. 
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FIGURE 3. The variation of buoyancy h with height x and the radiation number. Parameter 
6is the ratio of the initial difference of temperature of the plume and the outside atmosphere 
and the temperature of the latter. S = 2. 
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1.0 

2.0 

3.0 

4.0 

5.0 

Q T* "C 

0*0200 327 
0.2000 - 
0*5000 - 
0.0200 627 
0.0500 - 
0.5000 - 

0.0020 927 
0.0200 - 
0.0500 - 
0.5000 - 

0.0020 1227 
0~0200 - 
0.0500 - 

0*0020 1527 
0.0500 - 
0.5000 - 

8, x km 

0.0242 
2.415 

15.09 

0.1884 
1.177 

17.7 

0.0065 
0.6520 
4.075 

407.5 

0.0155 
1.545 
9.462 

0.0302 
18.87 

1887 

XI 
6.375 
1-975 
1.390 

3.600 
2.250 
1.150 

7.875 
2.430 
1.650 
1.050 

5.8500 
1.850 
1.380 

4.470 
1.250 
1.010 

X ,  l i ,x 10-6km 

0.6375 1.540 
0.2125 47.69 
0.0875 209.8 

0.3500 0.6781 
0.2000 26.49 
0.0210 1354 

0.6000 0.5134 
0.1900 15.84 
0.0900 67.24 
0.0075 4279 

0.4600 0.9041 
0.1000 28.58 
0.0500 133.1 

0.3250 1.349 
0.0400 235.8 
0.0020 2105 x 10 

E, x km 

0.1540 
5.131 

13-21 

0.6692 
2.354 

24-72 

0.0391 
1.239 
3.667 

30.56 

0.0713 
0.3090 
4.821 

0.0981 
7.546 

37.73 

TABLE 1. Fifty per cent. heights h, and h, for velocity and for buoyancy respectively for 
typical fire sizes 8, and their initial temperatures T* for k* = 0.01 em-l corresponding to 
some values of the dimensionless parameters Q and 8. The heights fi, and li, and the initial 
fire size 8, are in kilometres, while the temperature T* is in degrees Centigrade. X ,  and X ,  
are the dimensionless heights corresponding to El and Ti,, respectively 
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opaque case,? which might, at  best, be regarded as a particular solution for this 
approximation and not the only one. 
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t The referee commented that in other dynamical problems the maximum effect usually 
occurs in the opaque approximation. The author thinks that the answer to this question 
can, perhaps, be found in looking at the complete solution rather than the asymptotic 
cases as hitherto done. This attempt is being made. 


